Import Question JSON

Current Question (ID: 9897)

Question:
$\text{An engine pumps liquid of density d continuously through a pipe of cross-sectional area A. If the speed with which liquid passes through the pipe is v, then the rate at which kinetic energy is being imparted to the liquid by the pump is:}$
Options:
  • 1. $Adv^2$
  • 2. $\frac{1}{2}Adv^2$
  • 3. $\frac{1}{2}Adv^3$
  • 4. $\frac{1}{2}Adv$
Solution:
\text{Rate of mass of liquid pumped, } \frac{m}{t} = A \cdot v \cdot d \text{Kinetic energy imparted } = \frac{1}{2}mv^2 \text{Rate of kinetic energy imparted } = \frac{1}{2} \frac{mv^2}{t} = \frac{1}{2}Avd \cdot v^2 = \frac{1}{2}Adv^3

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}